成人av无码一区二区三区,欧美囗交视频,亚洲欧美另类图片在线日韩,日韩人无码久久精品人妻

產(chǎn)品展示
當前位置:首頁 > 全部產(chǎn)品 > 英國Ossila > 材料 > 石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882
廠家直接訂貨、原裝正品、交期準時、歡迎新老客戶?。?!經(jīng)銷商請致電我司?。?!

分享到:

只用于動物實驗研究等

Graphene Oxide Powders and Solutions

Graphene oxide is one of the most popular 2D materials available. This is due to the wide range of fields that it can be applied to. It has a distinct advantage over other 2d materials (such as graphene), as it is easily dispersed within solution; allowing for processing at high concentrations. This has opened it up for use in applications such as optical coatings, transparent conductors, thin-film batteries, chemical resistant coatings, water purification, and many more.

Ossila have two types of graphene oxide powders available, with flake sizes between 1-5um and 1-50um. In addition, we also offer pre-dispersed graphene oxide solutions for simple instant use.

Graphene Oxide Powder

Graphene Oxide Powder StructureGraphene Oxide Powder XRD
  • List of products
  • What is graphene oxide?
  • Dispersion guides
  • Technical data and images
  • Publications
 

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

Product List

Graphene Oxide Powders

Product codeM881M882
Flake Size1-5 μm1-50 μm
Flake Thickness0.8-1.2 nm0.8-1.2 nm
Single layer ratio>99%>99%
Purity>99%>99%
Packaging InformationLight resistant bottleLight resistant bottle

Graphene Oxide Solutions

Product codeM883M884M885M886
Solution Volume100ml100ml100ml100ml
Concentration5 mg.ml-10.5 mg.ml-15 mg.ml-10.5 mg.ml-1
SolventsWater:IPAWater:IPAWater:IPAWater:IPA
Flake Sizes1-5 μm1-5 μm1-50 μm1-50 μm
Packaging Information4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

What Graphene Oxide is

Graphene oxide (GO), also referred to as graphite/graphitic oxide, is obtained by treating graphite with oxidisers, and results in a compound of carbon, oxygen, and hydrogen in variable ratios.

The structure and properties of GO are much dependent on the particular synthesis method and degree of oxidation. With buckled layers and an interlayer spacing almost two times larger (~0.7 nm) than that of graphite,  it typically still preserves the layer structure of the parent graphite.

GO absorbs moisture proportionally to humidity and swells in liquid water. GO membranes are vacuum-tight and impermeable to nitrogen and oxygen, but permeable to water vapours. The ability to absorb water by GO depends on the particular synthesis method and also shows a strong temperature dependence.

GO is considered as an electrical insulator for the disruption of its sp2 bonding networks. However, by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods, the electrical and optical properties of GO can be dynamically tuned. To increase the conductivity, oxygen groups are removed by reduction reactions to reinstall the delocalised hexagonal lattice structure. One of the advantages GO has over graphene is that it can be easily dispersed in water and other polar organic solvents. In this way, GO can be dispersed in a solvent and reduced in situ, resulting in potentially monodispersed graphene particles.

Due to its unique structure, GO can be functionalised in many ways for desired applications, such as optoelectronics, drug delivery, chemical sensors, membrane filtration, flexible electronics, solar cells and more.

GO was first synthesised by Brodie (1859), followed by Hummers' Method (1957), and later on by Staudenmaier and Hofmann methods. Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) where glucose is the sole starting material. The Tang-Lau method is considered to be easier, cheaper, safer and more environmentally-friendly. The thickness, ranging from monolayer to multilayers, can by adjusted using the Tang-Lau process. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the GO.

Dispersion Guides

Due to the presence of oxygen and hydroxide groups, the dispersibility of this material is significantly better than other 2d materials (such as graphene). High concentrations of GO can be dispersed in polar solvents, such as water. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to at least 5 mg.ml-1.
  • Add 1:1 ratio of deionized water to isopropyl alcohol.
  • Shake vigorously to break up material.
  • A short treatment in an ultrasonic bath will rapidly disperse the material.
  • For larger flakes, use a mechanical agitator instead (as sonication may damage the flakes).

Technical Data

General Information

CAS number7782-42-5 (graphite)
Chemical formulaCxHyOz
Recommended SolventsH2O, DMF, IPA
Synonyms
  • Single layer GO
  • GO
Classification / Family

2D semiconducting materials, Carbon nanomaterials, Graphene, Organic electronics

Colour

Black/Brown Sheets/Powder

 

Product Images

Monolayer Graphene OxideGraphene Oxide SEMSEM Images of flakes on silicon

 

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯數(shù)字),如:三加四=7

深圳市澤拓生物科技有限公司是國內(nèi)專業(yè)的石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882廠家,歡迎廣大顧客來電咨詢!
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
用心服務成就你我
日韩欧美午夜福利在线观看| av在线亚洲欧洲日产一区二区| 东方东方欧美色二区亚洲| 猛男欧美办公室激情在线| 真人操逼免费看| 啊用力嗯轻一点h| 骚人妻自拍| 浪妇荡sao嗯啊~h调教霍水| 色综合久久夜色精品国产| 成人精品一区二区三区电影| 中文字幕人成人乱码亚洲影影院| 国产高清对白探花| 男男乱体育生yin高h肉汁视频| 亚洲国产精品夜男人天堂| 艳妇荡乳欲伦第1章潘金莲| 国产粉嫩呻吟一区二区三区武则天| 国产精品一区二区18禁| 国内少妇偷人精品免费看| 免费成人黄色小电影| 女同羞羞高潮网站www免费看| 曰本三级免费看| AV一区二区三区在线免费观看| 无码专区一va亚洲v专| 欧美一区二区18| 999成人精品视频在线| 天天干天天日天天草天天| 国产又粗又猛又爽又黄的a片小说| 日韩色图自拍偷拍| 美女爆吸乳羞羞免费网站妖精| 娇妻被交换粗又大又硬影视| 真人真事毛片视频免费| 亚洲色偷偷色噜噜狠狠99网| 国产精品久久久久久精三级| 亚欧无线一线二线三线区别 | 51吃瓜今日吃瓜入口黑料| 粉嫩虎白一线天流白浆视频| 偷拍自拍88| 久久精品国产亚洲精品2020| 亚洲性猛交88vv| 成人av在线播放亚洲高清| 国产精品制服丝袜第一页|